BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Find the general solution of each of the following differential equations. If the characteristic equation has complex roots, write your solution in trigonometric form.

  • [math]2\dydx + 3y = 0[/math]
  • [math]y^\prime = 5y[/math]
  • [math]\deriv{2}y + 4 \dydx - 5y = 0[/math]
  • [math]\deriv{2}y - 2 \dydx + 5y = 0[/math]
  • [math]y^{\prime\prime} + 8y^\prime + 16y = 0[/math]
  • [math]4 \deriv{2}y - 4 \dydx + y = 0[/math]
  • [math]y^{\prime\prime} - 7y^{\prime} = 0[/math]
  • [math]\deriv{2}y + 4y = 0[/math]
  • [math]\deriv2y - 9y = 0[/math]
  • [math]\dydx + 13y = 0[/math]
  • [math]\deriv2y + 13 \dydx = 0[/math]
  • [math]\deriv2y + \dydx + y = 0[/math]
  • [math]y^{\prime\prime} + 14y^\prime + 50y = 0[/math]
  • [math]y^{\prime\prime} + 14y^\prime + 49y = 0[/math].