BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
For each of the following equations [math]r=f(\theta)[/math] and pairs of numbers [math]a[/math] and [math]b[/math], draw the region [math]R[/math] consisting of all points with polar coordinates [math](r,\theta)[/math] such that [math]a\leq\theta\leq b[/math] and [math]0\leq r\leq f(\theta)[/math]. Compute [math]\mbox{''area''}(R)[/math].
- [math]r=4\sin\theta[/math], [math]a=0[/math] and [math]b=\pi[/math].
- [math]r=\frac4{\sin\theta}[/math], [math]a=\frac\pi4[/math] and [math]b=\frac{3\pi}4[/math].
- [math]r=2\theta[/math], [math]a=\pi[/math] and [math]b=2\pi[/math].
- [math]r=\frac1{2\cos\theta+3\sin\theta}[/math], [math]a=0[/math] and [math]b=\frac\pi2[/math].
- [math]r=\sqrt{2\cos2\theta}[/math], [math]a=0[/math] and [math]b=\frac\pi4[/math]. (See Example)