May 01'23
Exercise
Let [math]X[/math] be a continuous random variable with density function
[[math]]
f(x) = \begin{cases}
\frac{p-1}{x^p}, \, x \gt 1 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
Calculate the value of [math]p[/math] such that [math]\operatorname{E}(X) = 2 [/math].
- 1
- 2.5
- 3
- 5
- There is no such [math]p[/math]
May 01'23
Solution: C
[[math]]
\begin{align*}
\operatorname{E}[X] = \int_{1}^{\infty} x \frac{p-1}{x^p} dx &= (p-1) \int_{1}^{\infty} x^{1-p} dx \\
&= (p-1) \frac{x^{2-p}}{2-p} \Big |_1^{\infty} \\ &= \frac{p-1}{p-2} = 2.
\end{align*}
[[/math]]
Hence [math]p = 3[/math].