BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Prove that, if a 3-by-3 transition matrix has the property that its column sums are 1, then [math](1/3, 1/3, 1/3)[/math] is a fixed probability vector. State a similar result for [math]n[/math]-by-[math]n[/math] transition matrices. Interpret these results for ergodic chains.