BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
If the number [math]M[/math] is the least upper bound of the set of all numbers [math]f(x)[/math] for [math]x[/math] lying in an interval [math]I[/math], we say simply that [math]M[/math] is the least upper bound of [math]f[/math] on [math]I[/math]. A similar remark holds for the greatest lower bound. Draw the graph of the function [math]f[/math] defined by [math]f(x) = \frac1{x-1}[/math], and answer the following questions.
- What is the least upper bound of [math]f[/math] on the closed interval [math][2,3][/math]?
- What is the greatest lower bound of [math]f[/math] on [math][2,3][/math]?
- What are the least upper bound and greatest lower bound of [math]f[/math] on the open interval [math](2,3)[/math]?
- What is the greatest lower bound of [math]f[/math] on the interval [math](1,2)[/math]?