May 01'23
Exercise
The distribution of the size of claims paid under an insurance policy has probability density function
[[math]]
f(x) = \begin{cases}
cx^a, \, 0 \lt x \lt 5 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
Where [math]a \gt 0[/math] and [math]c \gt 0 [/math]. For a randomly selected claim, the probability that the size of the claim is less than 3.75 is 0.4871.
Calculate the probability that the size of a randomly selected claim is greater than 4.
- 0.404
- 0.428
- 0.500
- 0.572
- 0.596
May 01'23
Solution: B
Because the density function must integrate to 1,
[[math]]
1 = \int_0^5 cx^a dx = c \frac{5^{a+1}}{a+1} \Rightarrow \frac{a+1}{5^{a+1}}.
[[/math]]
From the given probability,
[[math]]
\begin{align*}
0.4871 &= \int_{0}^{3.75} cx^a dx = c \frac{3.75^{a+1}}{a+1} = \frac{a+1}{5^{a+1}}\frac{3.75^{a+1}}{a+1} = \left( \frac{3.75}{5}\right)^{a+1} \\
\ln(0.4871) &= -0.71929 = (a + 1) \ln(3.75 / 5) = -0.28768(a+1) \\
a &= (−0.71929) / (−0.28768) − 1 =1.5.
\end{align*}
[[/math]]
The probability of a claim exceeding 4 is,
[[math]]
\int_4^5 cx^a dx = c \frac{5^{a+1} - 4^{a+1}}{a+1} = \frac{a+1}{5^{a+1}} \frac{5^{a+1} - 4^{a+1} }{a+1} = 1- \left(\frac{4}{5}\right)^{1.5 + 1} = 0.42757.
[[/math]]