May 07'23
Exercise
The value of a piece of factory equipment after three years of use is 100(0.5)[math]X[/math] where [math]X[/math] is a random variable having moment generating function
[[math]]
M_X(t) = \frac{1}{1-2t}, \, t \lt \frac{1}{2}.
[[/math]]
Calculate the expected value of this piece of equipment after three years of use.
- 12.5
- 25.0
- 41.9
- 70.7
- 83.8
May 07'23
Solution: C
[[math]]
\begin{align*}
E[100(0.5)^X] = 100 E[(0.5)^X] = 100E[e^{(\ln(0.5)}X] &= 100M_X(\ln(0.5))\\ &= 100 \frac{1}{1-2\ln(0.5)}\\ &= 41.9.
\end{align*}
[[/math]]