Exercise
An insurance company sells special fully discrete two-year endowment insurance policies to smokers (S) and non-smokers (NS) age [math]x[/math]. You are given:
(i) The death benefit is 100,000 ; the maturity benefit is 30,000
(ii) The level annual premium for non-smoker policies is determined by the equivalence principle
(iii) The annual premium for smoker policies is twice the non-smoker annual premium
(iv) [math]\quad \mu_{x+t}^{\mathrm{NS}}=0.1, t\gt0[/math]
(v) [math]\quad q_{x+k}^{\mathrm{s}}=1.5 q_{x+k}^{\mathrm{Ns}}[/math] for [math]k=0,1[/math]
(vi) [math]\quad i=0.08[/math]
Calculate the expected present value of the loss at issue random variable on a smoker policy.
- -30,000
- -29,000
- -28.000
- -27.000
- -26.000
Answer: A
[math]q_{x}^{\mathrm{NS}}=q_{x+1}^{\mathrm{NS}}=1-e^{-0.1}=0.095[/math]
Then the annual premium for the non-smoker policies is [math]P^{\mathrm{NS}}[/math], where
And then [math]P^{\mathrm{S}}=40,502[/math].