May 08'23
Exercise
Let [math]X[/math] be a random variable with density function
[[math]]
f(x) = \begin{cases}
2e^{-2x}, \, x \gt0 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
Calculate [math]\operatorname{P}[ X \leq 0.5 | X \leq 1.0].[/math]
- 0.433
- 0.547
- 0.632
- 0.731
- 0.865
May 08'23
Solution: D
[[math]]
\begin{align*}
F(x) &= \int_0^{x}2e^{-2y} dy = -e^{-2y} \Big |_0^x = 1-e^{-2x} \\
\operatorname{P}[X \leq 0.5 | X \leq 1.0] &= \frac{\operatorname{P}[X \leq 0.5]}{\operatorname{P}[X \leq 1.0]} = \frac{F(0.5)}{F(1.0)} = \frac{1-e^{-1}}{1-e^{-2}} = 0.731.
\end{align*}
[[/math]]