BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Evaluate each of the following definite integrals by finding an antiderivative and using Theorem.
- [math]\int_0^1 3x^2 \; dx[/math]
- [math]\int_0^1 (4x^3 + 3x^2 + 2x + 1) \; dx[/math]
- [math]\int_1^3 (5x - 1) \; dx[/math]
- [math]\int_1^3 (5t - 1) \; dt[/math]
- [math]\int_1^2 \left( x^2 + \frac1{x^2} \right) \; dx[/math]
- [math]\int_3^2 x^\frac13 \; dx[/math]
- [math]\int_{-2}^0 y^\frac15 \; dy[/math]
- [math]\int_1^2 \left( \frac2{x^3} + \frac1{x^2} + 2 \right) \; dx[/math]
- [math]\int_{-1}^1 (y^2 - y + 1) \; dy[/math]
- [math]\int_6^0 (x^3 - 9x^2 + 16x) \; dx[/math]
- [math]\int_3^5 (2x - 1)^2 \; dx[/math]
- [math]\int_3^x (6t^2 - 4t + 2) \; dx[/math]
- [math]\int_0^t (x^2 + 3x - 1) \; dx[/math]
- [math]\int_0^{x^2} s^3 \; ds[/math]
- [math]\int_a^b dx[/math]
- [math]\int_x^{3x} (4t - 1) \; dt[/math].