BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Evaluate each of the following definite integrals by finding an antiderivative and using Theorem.

  • [math]\int_0^1 3x^2 \; dx[/math]
  • [math]\int_0^1 (4x^3 + 3x^2 + 2x + 1) \; dx[/math]
  • [math]\int_1^3 (5x - 1) \; dx[/math]
  • [math]\int_1^3 (5t - 1) \; dt[/math]
  • [math]\int_1^2 \left( x^2 + \frac1{x^2} \right) \; dx[/math]
  • [math]\int_3^2 x^\frac13 \; dx[/math]
  • [math]\int_{-2}^0 y^\frac15 \; dy[/math]
  • [math]\int_1^2 \left( \frac2{x^3} + \frac1{x^2} + 2 \right) \; dx[/math]
  • [math]\int_{-1}^1 (y^2 - y + 1) \; dy[/math]
  • [math]\int_6^0 (x^3 - 9x^2 + 16x) \; dx[/math]
  • [math]\int_3^5 (2x - 1)^2 \; dx[/math]
  • [math]\int_3^x (6t^2 - 4t + 2) \; dx[/math]
  • [math]\int_0^t (x^2 + 3x - 1) \; dx[/math]
  • [math]\int_0^{x^2} s^3 \; ds[/math]
  • [math]\int_a^b dx[/math]
  • [math]\int_x^{3x} (4t - 1) \; dt[/math].