ABy Admin
Jan 19'24
Exercise
For fully discrete 30 -payment whole life insurance policies on (x), you are given:
(i) The following expenses payable at the beginning of the year:
1st Year | Years 2 – 15 | Years 16 – 30 | Years 31 and after | |
---|---|---|---|---|
Per policy | 60 | 30 | 30 | 30 |
Percent of premium | [math]80 \%[/math] | [math]20 \%[/math] | [math]10 \%[/math] | [math]0 \%[/math] |
(ii) [math]\quad \ddot{a}_{x}=15.3926[/math]
(iii) [math]\quad \ddot{a}_{x: 15 \mid}=10.1329[/math]
(iv) [math]\quad \ddot{a}_{x: 30 \mid}=14.0145[/math]
(v) Annual gross premiums are calculated using the equivalence principle
(vi) The annual gross premium is expressed as [math]k F+h[/math], where [math]F[/math] is the death benefit and [math]k[/math] and [math]h[/math] are constants for all [math]F[/math]
Calculate [math]h[/math].
- 30.3
- 35.1
- 39.9
- 44.7
- 49.5
ABy Admin
Jan 19'24
Answer: D
[[math]]
\begin{aligned}
& G \ddot{a}_{x: \overline{30}}=\mathrm{APV}[\text { gross premium }]=\mathrm{APV}[\text { Benefits }+ \text { expenses }] \\
& \quad=F A_{x}+\left(30+30 \ddot{a}_{x}\right)+G\left(0.6+0.10 \ddot{a}_{x: 30}+0.10 \ddot{a}_{x: 15}\right) \\
& G=\frac{F A_{x}+30+30 \ddot{a}_{x}}{\ddot{a}_{x: 30 \mid}-0.6-0.1 \ddot{a}_{x: 30}-0.1 \ddot{a}_{x: 15}} \\
& =\frac{F A_{x}+30+30(15.3926)}{14.0145-0.6-0.1(14.0145)-0.1(10.1329)} \\
& =\frac{F A_{x}+491.78}{10.9998} \\
& =\frac{F A_{x}}{10.9998}+\frac{491.78}{10.9998}=\frac{F A_{x}}{10.9998}+44.71 \\
& \Rightarrow h=44.71
\end{aligned}
[[/math]]