BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Suppose that [math]X[/math] and [math]Y[/math] are continuous random variables with
density functions [math]f_X(x)[/math] and [math]f_Y(y)[/math], respectively. Let [math]f(x, y)[/math] denote the joint density function of [math](X, Y)[/math]. Show that
[[math]]
\int_{-\infty}^\infty f(x, y)\, dy = f_X(x)\ ,
[[/math]]
and
[[math]]
\int_{-\infty}^\infty f(x, y)\, dx = f_Y(y)\ .
[[/math]]