May 01'23
Exercise
The number of injury claims per month is modeled by a random variable [math]N[/math] with
[[math]]
\operatorname{P}[N=n] = \frac{1}{(n+1)(n+2)}
[[/math]]
, for nonnegative integers, [math]n[/math]. Calculate the probability of at least one claim during a particular month, given that there have been at most four claims during that month.
- 1/3
- 2/5
- 1/2
- 3/5
- 5/6
May 01'23
Solution: B
Observe
[[math]]
\begin{align*}
\operatorname{P}[ N ≥ 1 | N ≤ 4 ] = \frac{\operatorname{P}[1 ≤ N ≤ 4]}{\operatorname{P}[ N ≤ 4]} &= \frac{1/6 + 1/12 + 1/20 + 1/30}{1/2 + 1/6 +1/12 + 1/20 + 1/30} \\
&= \frac{10 + 5 + 3 + 2}{30 + 10 + 5 + 3 + 2} \\
&= \frac{20}{50} \\
&= \frac{2}{5}.
\end{align*}
[[/math]]