Jun 28'24
Exercise
Find [math]E(X^Y)[/math], where [math]X[/math] and [math]Y[/math] are independent random variables which are uniform on [math][0, 1][/math].
- 0.6931
- 0.7131
- 0.7344
- 0.7544
- 0.775
References
Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.
Jun 28'24
Solution: A
For fixed [math]y \in [0,1][/math], we have [math]E[X^y] = \frac{1}{y+1}[/math] and thus
[[math]]
E[X^Y] = \int_{0}^1 \frac{1}{y+1} \, dy = \log(2).
[[/math]]