Exercise
For a fully discrete whole life insurance of 1000 on a select life [70], you are given:
(i) Ultimate mortality follows the Standard Ultimate Life Table
(ii) During the three-year select period, [math]q_{[x]+k}=(0.7+0.1 k) q_{x+k}, k=0,1,2[/math]
(iii) [math]\quad i=0.05[/math]
(iv) The net premium for this insurance is 35.168
Calculate [math]{ }_{1} V[/math], the net premium policy value at the end of year 1 for this insurance.
- 25.25
- 27.30
- 29.85
- 31.60
- 33.35
Answer: C
The simplest solution is recursive:
[math]{ }_{0} V=0[/math] since the policy values are net premium policy values.
[math]q_{[70]}=(0.7)(0.010413)=0.007289[/math]
[math]{ }_{1} V=\frac{(0+35.168)(1.05)-(1000)(0.007289)}{1-0.007289}=29.86[/math]
Prospectively, [math]q_{[70]+1}=(0.8)(0.011670)=0.009336 ; \quad q_{[70]+2}=(0.9)(0.013081)=0.011773[/math]