BBot
May 08'24
Exercise
[math]
\newcommand{\R}{\mathbb{R}}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Rbar}{\overline{\mathbb{R}}}
\newcommand{\Bbar}{\overline{\mathcal{B}}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\p}{\mathbb{P}}
\newcommand{\one}{\mathds{1}}
\newcommand{\0}{\mathcal{O}}
\newcommand{\mat}{\textnormal{Mat}}
\newcommand{\sign}{\textnormal{sign}}
\newcommand{\CP}{\mathcal{P}}
\newcommand{\CT}{\mathcal{T}}
\newcommand{\CY}{\mathcal{Y}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math](\Omega,\F,(\F_n)_{n\geq0},\p)[/math] be a filtered probability space. Let [math]X=(X_n)_{n\geq 0}[/math] be a supermartingale and let [math]T[/math] be a stopping time. Then
[[math]]
X_T\in L^1(\Omega,\F,(\F_n)_{n\geq 0},\p)
[[/math]]
and
[[math]]
\E[X_T]\leq \E[X_0]
[[/math]]
in each case of the following situations.
- [math]T[/math] is bounded.
- [math]X[/math] is bounded and [math]T[/math] is finite.
- [math]\E[T] \lt \infty[/math] and for some [math]k\geq 0[/math], we have
[[math]] \vert X_n(\omega)-X_{n-1}(\omega)\vert\leq k, [[/math]]for all [math]\omega\in\Omega[/math].