ABy Admin
May 14'23
Exercise
The number of annual losses has a Poisson distribution with a mean of 5. The size of each loss has a Pareto distribution with [math]\theta = 10 [/math] and [math] \alpha = 2.5 [/math]. An insurance policy for the losses has an ordinary deductible of 5 per loss.
Calculate the expected value of the aggregate annual payments for this policy.
- 8
- 13
- 18
- 23
- 28
ABy Admin
May 14'23
Key: C
Let [math]X[/math] be the loss random variable. Then, [math]( X − 5)_+[/math] is the claim random variable.
[[math]]
\begin{aligned}
&\operatorname{E}(X) = \frac{10}{2.5-1} = 6.667 \\
&\operatorname{E}(X \wedge 5) = \left( \frac{10}{2.5 -1}\right) \left [ 1-(\frac{10}{5+10})^{2.5-1}\right] = 3.038 \\
&\operatorname{E}[( X − 5)_+ ] = \operatorname{E}[ X ) − \operatorname{E}[ X \wedge 5) = 6.667 − 3.038 = 3.629
\end{aligned}
[[/math]]
Expected aggregate claims =
[[math]]\operatorname{E}( N ) \operatorname{E}[( X − 5) + ] = 5(3.629) = 18.15.[[/math]]