BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Show that
[[math]]
P(S_1 \ge 0,\ S_2 \ge 0,\ \ldots,\ S_{2m} \ge 0) = u_{2m}\ .
[[/math]]
Hint: First explain why
[[math]]
\begin{eqnarray*}
&&P(S_1 \gt 0,\ S_2 \gt 0,\ \ldots,\ S_{2m} \gt 0) \\
&& \;\;\;\;\;\;\;\;\;\;\;\;\; = {1\over 2}P(S_1 \ne 0,\ S_2 \ne 0,\ \ldots,\ S_{2m} \ne 0) \ .
\end{eqnarray*}
[[/math]]
Then use Exercise, together with the observation that if no equalization occurs in the first [math]2m[/math] outcomes, then the path goes through the point [math](1,1)[/math] and remains on or above the horizontal line [math]x = 1[/math].