BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
- Let [math]g[/math] be a function which is continuously
differentiable on the closed interval [math][c,d][/math].
Prove, as a corollary of Theorem \ref{thm 10.2.2},
that the arc length [math]{L_c}^d[/math] of the graph
of the equation [math]x = g(y)[/math] between the points
[math](g(c), c)[/math] and [math](g(d), d)[/math] is given by the formula
[[math]] {L_c}^d = \int_c^d \sqrt{1+g^\prime(y)^2} \; dy . [[/math]]
- Find the arc length of the graph of the equation [math]x = \frac13(y^2+2)^\frac32[/math] between the point [math]\left( \frac{2\sqrt2}2, 0 \right)[/math] and the point [math](2\sqrt6, 2)[/math].
- Express as a definite integral the arc length of that part of the graph of the equation [math]x = 2y - y^2[/math] for which [math]x \geq 0[/math].