BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
It is stated in this section that the first condition for integrability is always satisfied: If [math]f[/math] is bounded on [math][a,b][/math], then there exists a real number [math]J[/math] such that [math]L_\sigma \leq J \leq U_\tau[/math] for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a,b][/math].
- Show that one such number is the least upper bound of all the lower sums [math]L_\sigma[/math]. (This number is called the lower integral of [math]f[/math] from [math]a[/math] to [math]b[/math].)
- Show that another possibility is the greatest lower bound of all the upper sums [math]U_\tau[/math]. (This number is the upper integral of [math]f[/math] from [math]a[/math] to [math]b[/math].)
- Show that [math]f[/math] is integrable over [math][a,b][/math] if and only if the lower integral from [math]a[/math] to [math]b[/math] equals the upper integral, and that if the lower integral equals the upper then their common value is [math]\int_a^b f[/math].