BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

It is stated in this section that the first condition for integrability is always satisfied: If [math]f[/math] is bounded on [math][a,b][/math], then there exists a real number [math]J[/math] such that [math]L_\sigma \leq J \leq U_\tau[/math] for any two partitions [math]\sigma[/math] and [math]\tau[/math] of [math][a,b][/math].

  • Show that one such number is the least upper bound of all the lower sums [math]L_\sigma[/math]. (This number is called the lower integral of [math]f[/math] from [math]a[/math] to [math]b[/math].)
  • Show that another possibility is the greatest lower bound of all the upper sums [math]U_\tau[/math]. (This number is the upper integral of [math]f[/math] from [math]a[/math] to [math]b[/math].)
  • Show that [math]f[/math] is integrable over [math][a,b][/math] if and only if the lower integral from [math]a[/math] to [math]b[/math] equals the upper integral, and that if the lower integral equals the upper then their common value is [math]\int_a^b f[/math].