May 05'23
Exercise
Let [math]X[/math] and [math]Y[/math] be continuous random variables with joint density function
[[math]]
f(x,y) = \begin{cases}
24xy, \,\, 0 \lt x \lt 1 \,\, \textrm{and} \,\, 0 \lt y \lt 1-x \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Calculate [math] \operatorname{P}[Y \lt X | X = 1/3][/math]
- 1/27
- 2/27
- 1/4
- 1/3
- 4/9
May 05'23
Solution: C
Note that the conditional density function
[[math]]
\begin{align*}
f(y | x = \frac{1}{3} ) &= \frac{f(1/3,y)}{f_x(1/3)}, \, 0 \lt y \lt \frac{2}{3}, \\
f_x(\frac{1}{3}) &= \int_0^{2/3} 24 (1/3) y dy = \int_0^{2/3} 8y dy = 4y^2 \Big|_0^{2/3} = \frac{16}{9}.
\end{align*}
[[/math]]
It follows that
[[math]]
f(y | x = \frac{1}{3} ) = \frac{9}{16} f(1/3, y) = \frac{9}{2}y, \, 0 \lt y \lt \frac{2}{3}
[[/math]]
Consequently,
[[math]]
\operatorname{P}[Y \lt X | X = 1/3] = \int_0^{1/3} \frac{9}{2} y dy = \frac{9}{4} y^2 \Big |_0^{1/3} = \frac{1}{4}.
[[/math]]