BBy Bot
May 31'24

Exercise

[math] \newcommand{\smallfrac}[2]{\frac{#1}{#2}} \newcommand{\medfrac}[2]{\frac{#1}{#2}} \newcommand{\textfrac}[2]{\frac{#1}{#2}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\e}{\operatorname{e}} \newcommand{\B}{\operatorname{B}} \newcommand{\Bbar}{\overline{\operatorname{B}}} \newcommand{\pr}{\operatorname{pr}} \newcommand{\dd}{\operatorname{d}\hspace{-1pt}} \newcommand{\E}{\operatorname{E}} \newcommand{\V}{\operatorname{V}} \newcommand{\Cov}{\operatorname{Cov}} \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}} \newcommand{\ran}{\operatorname{ran}} \newcommand{\card}{\#} \renewcommand{\P}{\operatorname{P}} \renewcommand{\L}{\operatorname{L}} \newcommand{\mathds}{\mathbb}[/math]

Replicate the results of Figure. More precisely, run the code from Problem for different dimensions [math]d[/math] and different distance functions [math]\Delta=\Delta(d)[/math], e.g., [math]\Delta\equiv c \gt 0[/math], [math]\Delta=2\sqrt{d}[/math], [math]\Delta=d^{0.3}[/math] or [math]\Delta=d^{1/4}[/math]. Plot the rate of correctly classified data points as a function of the dimension. Simulate also the case [math]\Delta=2d^{0.2}[/math] and confirm that this leads to a low correct classification rate which decreases for large dimensions.

Average rate of correctly classified data points for [math]\Delta=2d^{0.2}[/math].