BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Suppose that [math]X[/math] and [math]Y[/math] are independent and [math]Z = X + Y[/math]. Find
[math]f_Z[/math] if
-
[[math]] f_X(x) = \left \{ \begin{array}{ll} \lambda e^{-\lambda x}, & \mbox{if $x \gt 0,$} \\ 0, & \mbox{otherwise.} \end{array} \right. [[/math]]\smallskip[[math]] f_Y(x) = \left \{ \begin{array}{ll} \mu e^{-\mu x}, & \mbox{if $x \gt 0,$} \\ 0, & \mbox{otherwise.} \end{array} \right. [[/math]]
-
[[math]] \ \ \ f_X(x) = \left \{ \begin{array}{ll} \lambda e^{-\lambda x}, & \mbox{if $x \gt 0,$} \\ 0, & \mbox{otherwise.} \end{array} \right. [[/math]]\smallskip[[math]] f_Y(x) = \left \{ \begin{array}{ll} 1, & \mbox{if $0 \lt x \lt 1,$} \\ 0, & \mbox{otherwise.} \end{array} \right. [[/math]]