BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Prove that the harmonic series [math]\sum_{k=1}^\infty \frac1k[/math] diverges using the following elementary argument. Begin by grouping the terms of the series:
[[math]]
\sum_{k=1}^\infty \frac1k =
1 + \left(\frac12+\frac13\right) +
\left(\frac14+\frac15+\frac16+\frac17\right)
[[/math]]
[[math]]
+ \left(\frac18+\frac19+\frac1{10}+\frac1{11}+\frac1{12}+
\frac1{12}+\frac1{13}+\frac1{14}+\frac1{15}\right) + \cdots
,
[[/math]]
and observe that
[[math]]
\frac12 + \frac13 \gt \frac14 + \frac14 = \frac12
,
[[/math]]
[[math]]
\frac14+\frac15+\frac16+\frac17 \gt
\frac18+\frac18+\frac18+\frac18=\frac12,
\quad \mbox{etc.}
[[/math]]