BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Evaluate the following definite integrals.
- [math]\int_0^1 (3x^2 + 4x + 1) \; dx[/math]
- [math]\int_{-1}^1 (2t^3 + t) \; dt[/math]
- [math]\int_{-1}^1 (x^3 + 1)^{17}x^2 \; dx[/math]
- [math]\int_{-1}^2 \frac{s+1}{\sqrt{s^2 + 2s + 3}} \; ds[/math]
- [math]\int_1^3 \left(x^2 + \frac1x\right)^3 \left(2x - \frac1{x^2} \right) \; dx[/math]
- [math]\int_0^2 \frac1{(x+1)^2} \; dx[/math]
- [math]\int_{-2}^2 \sqrt{4-x^2} \, x \; dx[/math]
- [math]\int_{-2}^2 (2|x| + 1) \; dx[/math]
- [math]\int_0^1 t(t^3 + 3t^2 - 1)^3 (t + 2) \; dt[/math]
- [math]\int_1^2 \frac{x^4 + 2x^3 - 2}{x^2} \; dx[/math].