BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
It has been shown that the distance between a point on the hyperbola [math]\frac{x^2}{a^2} - \frac{y^2}{c^2-a^2} = 1[/math] and the focus [math](c,0)[/math] is [math]\left| \frac ca x - a \right|[/math]. Call this distance [math]d_1[/math].
- Show that the distance [math]d_2[/math] between a point on the hyperbola and the focus [math](-c,0)[/math] is [math]\left| \frac ca x + a \right|[/math].
- Show that [math]x \geq a[/math] for a point on the right branch of the hyperbola and that for such a point [math]d_1 = \frac ca x - a[/math] and [math]d_2 = \frac ca x + a[/math].
- Show that [math]x \leq -a[/math] for a point on the left branch of the hyperbola and that for such a point [math]d_1 = -\frac ca x + a[/math] and [math]d_2 = -\frac ca x - a[/math].
- Hence show that the graph of [math]\frac{x^2}{a^2} - \frac{y^2}{c^2-a^2} = 1[/math] contains only those points which satisfy the locus definition of hyperbola.