ABy Admin
Nov 18'23
Exercise
An annuity having n payments of 1 has a present value of X. The first payment is made at the end of three years and the remaining payments are made at seven-year intervals thereafter.
Determine X.
- [[math]]\frac{a_{\overline{7n+3}|} - a_{\overline{3}|}}{s_{\overline{3}|}}[[/math]]
- [[math]]\frac{a_{\overline{7n+3}|}-a_{\overline{3}|}}{a_{\overline{7}|}}[[/math]]
- [[math]]\frac{a_{\overline{7n+3}|}-a_{\overline{7}|}}{a_{\overline{3}|}}[[/math]]
- [[math]]\frac{a_{\overline{7n+3}|}-a_{\overline{7}|}}{a_{\overline{7}|}}[[/math]]
- [[math]]\frac{a_{\overline{7n+3}|}-a_{\overline{7}|}}{s_{\overline{3}|}}[[/math]]
ABy Admin
Nov 18'23
Solution: B
The present value is
[[math]]
\begin{align*}
v^3 + v^{10} + v^{17} + \cdots + v^{-4+7n}\\
= \frac{v^{3}-v^{3+7n}}{1-v^{7}}=\frac{\left(1-v^{3+7n}\right)-\left(1-v^{3}\right)}{1-v}=\frac{a_{\overline{3+7n}|}-a_{\overline{{{3}}}|}}{a_{\overline{{{7}}}|}}.
\end{align*}
[[/math]]