BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math], [math]Y[/math], and [math]Z[/math] be independent random variables
with
[[math]]
f_X(x) = f_Y(x) = f_Z(x) = \left \{ \begin{array}{ll}
1, & \mbox{if $0 \lt x \lt 1,$} \\
0, & \mbox{otherwise.}
\end{array}
\right.
[[/math]]
Suppose that [math]W = X + Y + Z[/math]. Find [math]f_W[/math] directly, and compare your answer with that given by the formula in Example. Hint: See Example.