May 01'23
Exercise
A group insurance policy covers the medical claims of the employees of a small company. The value, [math]V[/math], of the claims made in one year is described by [math]V = 100,000Y[/math] where [math]Y[/math] is a random variable with density function
[[math]]
f(y) = \begin{cases}
k(1-y)^4, \, 0\lt y \lt 1 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
where [math]k[/math] is a constant. Calculate the conditional probability that [math]V[/math] exceeds 40,000, given that [math]V[/math] exceeds 10,000.
- 0.08
- 0.13
- 0.17
- 0.20
- 0.51
May 01'23
Solution: B
To determine [math]k[/math], note that
[[math]]
1 = \int_0^1 k(1-y)^4 dy = -\frac{k}{5}(1-y)^{5} \Big | _0 ^1 = \frac{k}{5}.
[[/math]]
Hence [math] k = 5 [/math]. We need to find
[[math]]
\begin{align*}
\operatorname{P}[V \gt 10,000] &= \operatorname{P}[100,000 Y \gt 10,000] = \operatorname{P}[Y \gt 0.1] \\
&= \int_{0.1}^1 5(1-y)^4 dy = -(1-y)^5 \Big |_{0.1}^1 \\ &= (0.9)^5 \\ &= 0.59
\end{align*}
[[/math]]
and
[[math]]
\begin{align*}
\operatorname{P}[V \gt 40,000] = \operatorname{P}[100,000 Y \gt 40,000] = \operatorname{P}[Y \gt 0.4] &= \int_{0.4}^1 5(1-y)^4 dy \\
&= -(1-y)^5 \Big |_{0.4}^1 \\
&= (0.6)^5 \\
&= 0.078.
\end{align*}
[[/math]]
It now follows that
[[math]]
\begin{align*}
\operatorname{P}[V \gt 40,000 | V \gt 10,000] &= \frac{\operatorname{P}[V \gt 40, 000 ∩ V \gt 10, 000]}{\operatorname{P}[V \gt 10, 000]} \\
&= \frac{\operatorname{P}[V \gt 40, 000]}{\operatorname{P}[V \gt 10, 000]} \\
&= \frac{0.078}{0.59}\\
&= 0.132.
\end{align*}
[[/math]]