May 01'23
Exercise
Damages to a car in a crash are modeled by a random variable with density function
[[math]]
f(x) = \begin{cases}
c(x^2 − 60x + 800), \, 0 \lt x \lt 20 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
where [math]c[/math] is a constant. A particular car is insured with a deductible of 2. This car was involved in a crash with resulting damages in excess of the deductible.
Calculate the probability that the damages exceeded 10.
- 0.12
- 0.16
- 0.20
- 0.26
- 0.78
May 01'23
Solution: D
[[math]]
\begin{align*}
1 &= \int_{0}^{20} c(x^2-60x + 800) dx = c(x^3/3 - 30x^2 + 800x) \Big |_0^{20} = c20000/3 \Rightarrow c = 3/20000 \\
\operatorname{P}(X \gt d) &= \int_d^{20} c(x^2-60x + 800) dx = c(x^3/3 - 30x^2 + 800x) \Big |_d^{20} = 1- \frac{3}{20000}(d^3/3 -30d^2 + 800d) \\
\operatorname{P}(X\gt10 | X \gt2 ) &= \frac{\operatorname{P}(X\gt10)}{\operatorname{P}(X \gt 2)} = \frac{0.2}{0.776} = 0.2572.
\end{align*}
[[/math]]