Jan 17'24
Exercise
You are given the following data based on 60 lives at time 0 :
[math]j[/math] | [math]t_{(j)}[/math] | Deaths at [math]t_{(j)}[/math] | Exits in [math](t_{(j)}^{+},t_{(j+1)}^{-})[/math] | Entrants in [math](t_{(j)}^{+},t_{(j+1)}^{-})[/math] |
---|---|---|---|---|
0 | 0 | 0 | ||
1 | 5.3 | 1 | 8 | 1 |
2 | 8.6 | 1 | 6 | 7 |
3 | 13.2 | 2 | 7 | 7 |
4 | 16.1 | 1 | 6 | 5 |
5 | 21.0 | 1 | 6 | 4 |
Calculate the upper limit of the 80% linear confidence interval for [math]S(21.0)[/math] using the Kaplan Meier estimate and Greenwood's approximation.
- 0.872
- 0.893
- 0.915
- 0.944
- 0.968
Jan 17'24
Answer: D
[math]\hat{S}(21.0)=\frac{59}{60} \times \frac{59-8+1-1}{59-8+1} \times \frac{51-6+7-2}{51-6+7} \times \frac{50-7+7-1}{50-7+7} \times \frac{49-6+5-1}{49-6+5}=0.8899[/math]
[math]\operatorname{Var}[\hat{S}(21.0)] \approx 0.8899^{2}\left(\frac{1}{60 \times 59}+\frac{1}{52 \times 51}+\frac{2}{52 \times 50}+\frac{1}{50 \times 49}+\frac{1}{48 \times 47}\right)=0.00181[/math]
The upper limit of the [math]80 \%[/math] linear confidence interval is
[[math]]
0.8899+1.282(0.00181)^{0.5}=0.944
[[/math]]