Jan 17'24

Exercise

You are given the following data based on 60 lives at time 0 :

[math]j[/math] [math]t_{(j)}[/math] Deaths at [math]t_{(j)}[/math] Exits in [math](t_{(j)}^{+},t_{(j+1)}^{-})[/math] Entrants in [math](t_{(j)}^{+},t_{(j+1)}^{-})[/math]
0 0 0
1 5.3 1 8 1
2 8.6 1 6 7
3 13.2 2 7 7
4 16.1 1 6 5
5 21.0 1 6 4


Calculate the upper limit of the 80% linear confidence interval for [math]S(21.0)[/math] using the Kaplan Meier estimate and Greenwood's approximation.

  • 0.872
  • 0.893
  • 0.915
  • 0.944
  • 0.968

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 17'24

Answer: D

[math]\hat{S}(21.0)=\frac{59}{60} \times \frac{59-8+1-1}{59-8+1} \times \frac{51-6+7-2}{51-6+7} \times \frac{50-7+7-1}{50-7+7} \times \frac{49-6+5-1}{49-6+5}=0.8899[/math]

[math]\operatorname{Var}[\hat{S}(21.0)] \approx 0.8899^{2}\left(\frac{1}{60 \times 59}+\frac{1}{52 \times 51}+\frac{2}{52 \times 50}+\frac{1}{50 \times 49}+\frac{1}{48 \times 47}\right)=0.00181[/math]

The upper limit of the [math]80 \%[/math] linear confidence interval is

[[math]] 0.8899+1.282(0.00181)^{0.5}=0.944 [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00