Jan 15'24

Exercise

You are given

[[math]]{ }_{t} q_{0}=\frac{t^{2}}{10,000}[[/math]]

for [math]0 \lt t \lt 100[/math].

Calculate [math]\stackrel{\circ}{e}_{\text {75:1010 }}[/math].

  • 6.6
  • 7.0
  • 7.4
  • 7.8
  • 8.2

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 15'24

Answer: E

[[math]] \begin{aligned} & e_{75: 10}=\int_{t=0}^{t=10}{ }_{t} p_{75} d t \quad \text { where }{ }_{t} p_{x}=\frac{{ }_{t+x} p_{0}}{{ }_{x} p_{0}}=\frac{1-\frac{(t+x)^{2}}{10000}}{1-\frac{x^{2}}{10000}}=\frac{10000-(t+x)^{2}}{10000-x^{2}} \text { for } 0\lt t \lt100-x \\ & =\int_{0}^{10} \frac{10000-75^{2}-150 t-t^{2}}{10000-75^{2}} d t \\ & =\frac{1}{4375} \cdot\left[4375 t-75 t^{2}-\frac{t^{3}}{3}\right]_{t=0}^{t=10}=8.21 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00