Jun 02'22
Exercise
The loss in year 1, [math]X[/math], has probability density function
[[math]]
f(x) = \begin{cases}
\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha +1}}, x
\geq 0 \\
0, x \lt 0
\end{cases}
[[/math]]
A deductible equalling the loss in year 1 is applicable in year 2. If the payment in year 2 equals [math]Y[/math], determine the joint density function for [math]X,Y[/math], given that [math]Y\gt0[/math].
- [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
- [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha^2}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
- [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
- [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha^2\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]
- [[math]] \begin{align*} g(x,y) &= \begin{cases} \frac{\alpha\theta^{\alpha}}{(x+\theta)(y + x + \theta)^{\alpha + 1}}, y \gt 0, x \gt 0 \\ 0, \, \textrm{Otherwise} \end{cases} \\ \end{align*} [[/math]]