ABy Admin
May 06'23
Exercise
Let [math]X[/math] denote the loss amount sustained by an insurance company’s policyholder in an auto collision. Let [math]Z[/math] denote the portion of [math]X[/math] that the insurance company will have to pay. An actuary determines that [math]X[/math] and [math]Z[/math] are independent with respective density and probability functions
[[math]]
f(x) = \begin{cases}
(1/8)e^{-x/8}, \, x \gt0 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
and
[[math]]
\operatorname{P}[Z = z] = \begin{cases}
0.45, \, z= 1 \\
0.55, \, z=0
\end{cases}
[[/math]]
Calculate the variance of the insurance company’s claim payment [math]ZX[/math].
- 13.0
- 15.8
- 28.8
- 35.2
- 44.6
ABy Admin
May 06'23
Solution: E
X has an Exponential distribution with mean 8 and variance 64. The second moment is 128. The mean and second moment of Z are both 0.45. Then (using the independence of X and Z),
[[math]]
\begin{align*}
\operatorname{E}( ZX ) = \operatorname{E}( Z ) \operatorname{E}( X ) = 0.45(8) \\
\operatorname{E}[( ZX )^ 2 ] = \operatorname{E}( Z ^2) \operatorname{E}( X^2 ) 0.45(128) = 57.6 \\
\operatorname{Var}(ZX) = 57.6 − 3.62 = 44.64.
\end{align*}
[[/math]]