BBy Bot
Jun 09'24
Exercise
Let [math]X[/math] be a continuous random variable with values exponentially distributed over [math][0,\infty)[/math] with parameter [math]\lambda = 0.1[/math].
- Find the mean and variance of [math]X[/math].
- Using Chebyshev's Inequality, find an upper bound for the following probabilities: [math]P(|X - 10| \geq 2)[/math], [math]P(|X - 10| \geq 5)[/math], [math]P(|X - 10| \geq 9)[/math], and [math]P(|X - 10| \geq 20)[/math].
- Calculate these probabilities exactly, and compare with the bounds in (b).