Jan 16'24
Exercise
For a mortality table with a select period of two years, you are given:
[math]x[/math] | [math]q_{[x]}[/math] | [math]q_{[x]+1}[/math] | [math]q_{x+2}[/math] | [math]x+2[/math] |
---|---|---|---|---|
50 | 0.0050 | 0.0063 | 0.0080 | 52 |
51 | 0.0060 | 0.0073 | 0.0090 | 53 |
52 | 0.0070 | 0.0083 | 0.0100 | 54 |
53 | 0.0080 | 0.0093 | 0.0110 | 55 |
The force of mortality is constant between integral ages.
Calculate [math]1000_{2.5} q_{[50]+0.4}[/math].
- 15.2
- 16.4
- 17.7
- 19.0
- 20.2
Jan 16'24
Answer: B
[[math]]
\begin{aligned}
{ }_{2.5} q_{[50]+0.4} & =1-{ }_{2.5} p_{[50]+0.4}=1-{ }_{2.9} p_{[50]} /\left(p_{[50]}\right)^{0.4} \\
& =1-\left\{p_{[50]} p_{[50]+1}\left(p_{52}\right)^{0.9}\right\} /\left(1-q_{[50]}\right)^{0.4} \\
& =1-\left\{\left(1-q_{[50]}\right)\left(1-q_{[50]+1}\right)\left(1-q_{52}\right)^{0.9}\right\} /\left(1-q_{[50]}\right)^{0.4} \\
& =1-\left\{(1-0.0050)(1-0.0063)(1-0.0080)^{0.9}\right\} /(1-0.0050)^{0.4} \\
& =0.01642
\end{aligned}
[[/math]]
[math]1000_{2.5} q_{[50]+0.4}=16.42[/math]