Jan 16'24
Exercise
You are given the following information from a life table:
[math]x[/math] | [math]l_{x}[/math] | [math]d_{x}[/math] | [math]p_{x}[/math] | [math]q_{x}[/math] |
---|---|---|---|---|
95 | - | - | - | 0.40 |
96 | - | - | 0.20 | - |
97 | - | 72 | - | 1.00 |
You are also given:
(i) [math]\quad l_{90}=1000[/math] and [math]l_{93}=825[/math]
(ii) Deaths are uniformly distributed over each year of age.
Calculate the probability that (90) dies between ages 93 and 95.5.
- 0.195
- 0.220
- 0.345
- 0.465
- 0.668
Jan 16'24
Answer: C
We need to determine [math]{ }_{3 \mid 2.5} q_{90}[/math].
[[math]]
{ }_{3 \mid 2.5} q_{90}=\frac{l_{90+3}-l_{90+3+2.5}}{l_{90}}=\frac{l_{93}-l_{95.5}}{l_{90}}=\frac{l_{93}-\left(l_{95}-0.5 d_{95}\right)}{l_{90}}=\frac{825-[600-0.5(240)]}{1,000}=0.3450
[[/math]]
where [math]l_{90}=1,000, l_{93}=825, l_{97}=\frac{d_{97}}{q_{97}}=\frac{72}{1}=72, l_{96}=\frac{l_{97}}{p_{96}}=\frac{72}{0.2}=360[/math],
[math]l_{95}=\frac{l_{96}}{p_{95}}=\frac{360}{1-0.4}=600[/math], and [math]d_{95}=l_{95}-l_{96}=600-360=240[/math].