May 06'23
Exercise
In a small metropolitan area, annual losses due to storm, fire, and theft are assumed to be mutually independent, exponentially distributed random variables with respective means 1.0, 1.5, and 2.4.
Calculate the probability that the maximum of these losses exceeds 3.
- 0.002
- 0.050
- 0.159
- 0.287
- 0.414
May 06'23
Solution: E
Let [math]S, F,[/math] and [math]T[/math] be the losses due to storm, fire, and theft respectively. Let [math]Y = \max(S,F,T)[/math]. Then,
[[math]]
\begin{align*}
\operatorname{P}[Y \gt 3] =1 − \operatorname{P}[Y ≤ 3] =1 − \operatorname{P}[\max( S , F , T ) ≤ 3] &=1 − \operatorname{P}[ S ≤ 3]\operatorname{P}[ F ≤ 3]\operatorname{P}[T ≤ 3]\\
&= 1 − (1 − e^{−3/1} )(1 − e^{−3/1.5} )(1 − e ^{-3/2.4} ) \\ &=0.414.
\end{align*}
[[/math]]