Exercise
[math] \require{textmacros} \def \bbeta {\bf \beta} \def\fat#1{\mbox{\boldmath$#1$}} \def\reminder#1{\marginpar{\rule[0pt]{1mm}{11pt}}\textbf{#1}} \def\SSigma{\bf \Sigma} \def\ttheta{\bf \theta} \def\aalpha{\bf \alpha} \def\ddelta{\bf \delta} \def\eeta{\bf \eta} \def\llambda{\bf \lambda} \def\ggamma{\bf \gamma} \def\nnu{\bf \nu} \def\vvarepsilon{\bf \varepsilon} \def\mmu{\bf \mu} \def\nnu{\bf \nu} \def\ttau{\bf \tau} \def\SSigma{\bf \Sigma} \def\TTheta{\bf \Theta} \def\XXi{\bf \Xi} \def\PPi{\bf \Pi} \def\GGamma{\bf \Gamma} \def\DDelta{\bf \Delta} \def\ssigma{\bf \sigma} \def\UUpsilon{\bf \Upsilon} \def\PPsi{\bf \Psi} \def\PPhi{\bf \Phi} \def\LLambda{\bf \Lambda} \def\OOmega{\bf \Omega} [/math]
Revisit Exercise. There the standard linear regression model [math]Y_i = \mathbf{X}_{i,\ast} \bbeta + \varepsilon_i[/math] for [math]i=1, \ldots, n[/math] and with [math]\varepsilon_i \sim_{i.i.d.} \mathcal{N}(0, \sigma^2)[/math] is considered. The model comprises a single covariate and an intercept. Response and covariate data are: [math]\{(y_i, x_{i,1})\}_{i=1}^4 = \{ (1.4, 0.0), (1.4, -2.0), (0.8, 0.0), (0.4, 2.0) \}[/math].
- Evaluate the generalized ridge regression estimator of [math]\bbeta[/math] with target [math]\bbeta_0 = \mathbf{0}_2[/math] and penalty matrix [math]\mathbf{\Delta}[/math] given by [math](\mathbf{\Delta})_{11} = \lambda = (\mathbf{\Delta})_{22}[/math] and [math](\mathbf{\Delta})_{12} = \tfrac{1}{2} \lambda = (\mathbf{\Delta})_{21}[/math] in which [math]\lambda = 8[/math].
- A data scientist wishes to leave the intercept unpenalized. Hereto s/he sets in part a) [math](\mathbf{\Delta})_{11} = 0[/math]. Why does the resulting estimate not coincide with the answer to Exercise? Motivate.