BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
(Crowell[Notes 1]) Let [math]\mat{P}[/math]
be the transition matrix of an ergodic Markov chain. Show that
[[math]]
(\mat {I} + \mat {P} +\cdots+ \mat {P}^{n - 1})(\mat {I} - \mat {P} + \mat {W})
= \mat {I} -
\mat {P}^n + n\mat {W}\ ,
[[/math]]
and from this show that
[[math]]
\frac{\mat {I} + \mat {P} +\cdots+ \mat {P}^{n - 1}}n \to \mat {W}\ ,
[[/math]]
as [math]n \rightarrow \infty[/math].
Notes