Nov 20'23
Exercise
Rhonda purchases a perpetuity providing a payment of 1 at the beginning of each year. The perpetuity’s Macaulay duration is 30 years.
Calculate the modified duration of this perpetuity
- 28.97
- 29.00
- 29.03
- 29.07
- 29.10
Nov 20'23
Solution: C
[[math]]
\begin{align*}
30 = \textrm{MACD} = \frac{\sum_{n=0}^{\infty}nv^n}{\sum_{n=0}^{\infty} v^n} = \frac{Ia_{\overline{\infty}|}}{\ddot{a}_{\overline{\infty}|}} = \frac{1/\left(d i\right)}{1/d}=\frac{\left(1+i\right)/\,i^{2}}{\left(1+i\right)/\,i}=\frac1i\ , \implies i = 1/30 \\
\textrm{ModD} = \frac{\textrm{MacD}}{1+i} = \frac{30}{1 + \frac{1}{30}} = 29.032.
\end{align*}
[[/math]]