May 01'23
Exercise
An insurer's annual weather-related loss, [math]X[/math], is a random variable with density function
[[math]]
f(x) = \begin{cases}
\frac{2.5(200)^{2.5}}{x^{3.5}}, \, x\gt200 \\
0, \, \textrm{Otherwise.}
\end{cases}
[[/math]]
Calculate the difference between the 30th and 70th percentiles of [math]X[/math].
- 35
- 93
- 124
- 231
- 298
May 01'23
Solution: B
The distribution function of X is given by
[[math]]
F(x) = \int_{200}^x \frac{2.5 (200)^{2.5}}{t^{3.5}} dt = \frac{-(200)^{2.5}}{t^{2.5}} \Big |_{200}^{x} = 1- \frac{(200)^{2.5}}{x^{2.5}}, \, x \gt 200.
[[/math]]
Therefore, the [math]p^{th}[/math] percentile [math]x_p[/math] of [math]X[/math] is given by
[[math]]
\begin{align*}
\frac{p}{100} = F(x_p) = 1- \frac{(200)^{2.5}}{x_p^{2.5}} \\
1-0.01p = \frac{(200)^{2.5}}{x_p^{2.5}} \\
(1-0.01p)^{2/5} = \frac{200}{x_p} \\
x_p = \frac{200}{(1-0.01p)^{2/5}}.
\end{align*}
[[/math]]
It follows that
[[math]]
x_{70} - x_{30} = \frac{200}{(0.30)^{2/5}} - \frac{200}{(0.70)^{2/5}} = 93.06.
[[/math]]