BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Assume that [math]a \gt 1[/math].

  • lab{5.4.11a} Using the definition of [math]a^x[/math], show that
    [[math]] \lim_{x\goesto\infty} a^x = \infty . [[/math]]
  • lab{5.4.11b} Using the result of \ref{ex5.4.11a}, prove that
    [[math]] \lim_{x\goesto-\infty} a^x = 0 . [[/math]]
  • lab{5.4.11c} Using \ref{ex5.4.11a}, show that
    [[math]] \lim_{x\goesto\infty} \frac{d}{dx} a^x = \infty . [[/math]]
  • lab{5.4.11d} Using \ref{ex5.4.11b}, show that
    [[math]] \lim_{x\goesto-\infty} \frac{d}{dx} a^x = 0 . [[/math]]
  • What do \ref{ex5.4.11a}, \ref{ex5.4.11b}, \ref{ex5.4.11c}, and \ref{ex5.4.11d} say geometrically about the graph of the function [math]a^x[/math]?