Exercise
A man buys a home for 250000. He pays 30000 in cash. The balance will be paid with a 25 year mortgage with [nominal annual] interest at 8% compounded semiannually. Find the level payment required under the mortgage at the end of each month.
- 1550
- 1430
- 1270
- 1680
- 1720
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.
Solution: D
SOLUTION 1:
Interest rate is .04 per six months so [math](1+j)^6=1.04[/math]. Thus [math]j=.006558[/math]. Then [math]220000=X a_{\overline{300} \mid j}[/math] so [math]X=\frac{220000}{a_{\overline{300} \mid j}}=\frac{220000}{131.0276}=1679.04[/math].
SOLUTION 2:
Interest rate is [math]i=.04[/math] for a period of 6 months. There are [math]25(2)=50[/math] periods. [math]a_{\overline{50} |}^{(6)}[/math] means [math]\mathrm{PV}[/math] of payments of [math]1 / 6[/math] per month. [math]6 a_{\overline{50}|}^{(6)}[/math] means PV of payments of 1 per month. [math]X a_{\overline{50}|}^{(6)}[/math] means PV of payments of [math]X[/math] per month. Then [math]220000=6 X a_{\overline{50} \mid}^{(6)}[/math] so [math]X=220000 / 6 a_{\overline{50}|}^{(6)}[/math]. Now
so [math]X=220000 / 131.0249=[/math] 1679.07.
References
Hlynka, Myron. "University of Windsor Old Tests 62-392 Theory of Interest". web2.uwindsor.ca. Retrieved November 23, 2023.