BBy Bot
Jun 09'24
Exercise
Let [math]X[/math] be a continuous random variable with mean [math]\mu = 10[/math] and variance [math]\sigma^2 = 100/3[/math]. Using Chebyshev's Inequality, find an upper bound for the following probabilities.
- [math]P(|X - 10| \geq 2)[/math].
- [math]P(|X - 10| \geq 5)[/math].
- [math]P(|X - 10| \geq 9)[/math].
- [math]P(|X - 10| \geq 20)[/math].