BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]\Omega[/math] be the sample space
[[math]]
\Omega = \{0,1,2,\dots\}\ ,
[[/math]]
and define a distribution function by
[[math]]
m(j) = (1 - r)^j r\ ,
[[/math]]
for some fixed [math]r[/math], [math]0 \lt r \lt 1[/math], and for [math]j = 0, 1, 2, \ldots[/math]. Show that this is a distribution function for [math]\Omega[/math].