Exercise
For two fully continuous whole life insurance policies on [math](x)[/math], you are given:
(i)
Death Benefit | Annual Premium Rate | Variance of the Present Value of Future Loss at [math]t[/math] | ||
---|---|---|---|---|
Policy A | 1 | 0.10 | 0.455 | |
Policy B | 2 | 0.16 | - |
(ii) [math]\delta=0.06[/math]
Calculate the variance of the present value of future loss at [math]t[/math] for Policy B.
- 0.9
- 1.4
- 2.0
- 2.9
- 3.4
Answer: B
[math]L_{A}=v^{T}-0.10 \bar{a}_{\bar{T}}=\left(1+\frac{10}{6}\right) v^{T}-\frac{10}{6}[/math]
[math]\operatorname{Var}\left(L_{A}\right)=\left(1+\frac{10}{6}\right)^{2} \operatorname{Var}\left(v^{T}\right)=0.455 \Rightarrow \operatorname{Var}\left(v^{T}\right)=0.06398[/math]
[math]L_{B}=2 v^{T}-0.16 \bar{a}_{T}=\left(2+\frac{16}{6}\right) v^{T}-\frac{16}{6}[/math]
[math]\operatorname{Var}\left(L_{B}\right)=\left(2+\frac{16}{6}\right)^{2} \operatorname{Var}\left(v^{T}\right)=\left(2+\frac{16}{6}\right)^{2}(0.06398)=1.39[/math]