ABy Admin
May 06'23
Exercise
Let [math]X[/math] denote the size of a surgical claim and let [math]Y[/math] denote the size of the associated hospital claim. An actuary is using a model in which
- [math]\operatorname{E}[X] = 5 [/math]
- [math]\operatorname{E}[X^2] = 27.4 [/math]
- [math]\operatorname{E}[Y] = 7 [/math]
- [math]\operatorname{E}[Y^2] = 51.4 [/math]
- [math]\operatorname{Var}[X + Y] = 8 [/math]
Let [math]C_1 = X + Y [/math] denote the size of the combined claims before the application of a 20% surcharge on the hospital portion of the claim, and let [math]C_2[/math] denote the size of the combined claims after the application of that surcharge.
Calculate [math]\operatorname{Cov}(C_1,C_2)[/math] .
- 8.80
- 9.60
- 9.76
- 11.52
- 12.32
ABy Admin
May 06'23
Solution: A
[[math]]
\begin{align*}
\operatorname{Cov}( C_1 , C_2 ) &= \operatorname{Cov}( X + Y , X + 1.2Y ) \\
&= \operatorname{Cov}( X , X ) + \operatorname{Cov}(Y , X ) + \operatorname{Cov}( X ,1.2Y ) + \operatorname{Cov}( Y,1.2Y ) \\
&= \operatorname{Var}(X) + \operatorname{Cov}( X , Y ) + 1.2\operatorname{Cov}( X , Y ) + 1.2\operatorname{Var}(Y) \\
&= \operatorname{Var}(X) + 2.2 \operatorname{Cov}( X , Y ) + 1.2\operatorname{Var}(Y)
\end{align*}
[[/math]]
[[math]]
\operatorname{Var}(X) = \operatorname{E}( X^2 ) − ( \operatorname{E}( X ) )^2 = 27.4 − 5^2 = 2.4
[[/math]]
[[math]]
\operatorname{Var}(Y) = \operatorname{E}( Y^2 ) − ( \operatorname{E}( Y ) )^2 = 27.4 − 5^2 = 2.4
[[/math]]
[[math]]
\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2 \operatorname{Cov}( X , Y )
[[/math]]
[[math]]
\operatorname{Cov}( C_1 , C_2 ) = 2.4 + 2.2 (1.6 ) + 1.2 ( 2.4 ) = 8.8
[[/math]]