BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Assume that [math]X_1[/math] and [math]X_2[/math] are independent random variables, each
having an exponential density with parameter [math]\lambda[/math]. Show that [math]Z = X_1 - X_2[/math] has density
[[math]]
f_Z(z) = (1/2)\lambda e^{-\lambda |z|}\ .
[[/math]]