ABy Admin
Nov 19'23
Exercise
A bank issues two 30-year bonds, A and B, each with annual coupons, an annual effective yield rate of 7%, and a face amount of 1000. The total price of these two bonds is 3000. Bond B's annual coupon rate is equal to Bond A's annual coupon rate plus 0.5%.
Calculate the annual coupon rate of Bond A.
- 10.06%
- 10.78%
- 10.90%
- 11.31%
- 11.84%
ABy Admin
Nov 19'23
Solution: B
Let [math]r_A[/math] represent the coupon rate of bond [math]\mathrm{A}[/math]. The coupon rate of bond [math]\mathrm{B}[/math] is then [math]r_A+0.005[/math]. From the given information,
[[math]]
\begin{aligned}
& 3000=1000\left[\frac{1}{(1.07)^{30}}+r_A a_{\overline{30} \mid 0.07}+\frac{1}{(1.07)^{30}}+\left(r_A+0.005\right) a_{\overline{30} \mid 0.07}\right] \\
& 3=\frac{2}{(1.07)^{30}}+2 r_A a_{\overline{30} \mid 0.07}+0.005 a_{\overline{30} \mid 0.07} \\
& 3=0.26273+24.81808 r_A+0.06205 \\
& r_A=\frac{3-0.26273-0.06205}{24.81808}=0.1078=10.78 \%
\end{aligned}
[[/math]]